Latent Allocation Spatiotemporal Models
For Indoor Human Mobility

Yiming Gu, Hala Mostafa
United Technologies Research Center
gujack,mostafh@utrc.utc.com

B. Aditya Prakash
Department of Computer Science, Virginia Tech
badityap@cs.vt.edu

ABSTRACT
The ability to understand, model and predict human mobility in
high-occupancy buildings like corporate offices and campuses can
fundamentally change the way buildings are managed. For exam-
ple, energy efficiency can be improved using more accurate models
of the temporal and spatial aspects of building occupancy. Simi-
larly, responding to emergency situations is more effective and less
intrusive if the building system has better knowledge not just of
where occupants are, but also of their likely next locations and
when they will get there. We propose a novel approach to learn a
spatiotemporal model of human mobility from observed trajec-
tries. Our approach posits the existence of different mobility profiles
that reflect the heterogeneity in the way people move between
locations. Our proposed latent allocation model describes the prob-
abilistic relationships between the observed trajectory data and
the latent (unobserved) mobility profiles and their parameters. To
tackle the problem of inferring these parameters efficiently, we
frame the model as a neural network. We engineer the layers of
the network to enforce appropriate constraints on the learned spatial
and temporal parameters of each profile to best explain the data.
We demonstrate our model and learning approach on synthetic
data and give initial results from a subset of real data collected from
our corporate building.

ACM Reference Format:
Spatiotemporal Models For Indoor Human Mobility . In UrbComp 2018,
August 2018, London, United Kingdom. ACM, New York, NY, USA, Article 4,
9 pages. https://doi.org/10.1145/nnnnnn.nnnnnnn

1 INTRODUCTION
The study of human mobility has found new sources of data with
the proliferation of smart phones, Call Detail Records and wireless
devices that can be used to track users [2, 12, 14]. Complementing
this broader set of data sources is an increasingly broader set of
needs in various domains that can benefit from mobility models.
For outdoor city- or campus-scale mobility, approaches for smarter
transportation and urban planning efforts can use mobility models
to design more streamlined cities. Data from from taxi rides and
GPS data can also be useful for next location prediction, which can
inform resource management policies on the part of taxi companies
and municipalities [28]. In commercial spaces, taxi ride data and
Point of Interest data can be combined to infer ride purpose, which
can help match supply and demand for different types of commercial
spaces and services [34].

For indoor settings, better understanding and models of human
mobility can enable a range of improvements in the energy effi-
ciency of buildings, their ease of use and their safety in emergency
situations. Predictive models can help a building management sys-
tem plan HVAC settings and perhaps shape the building’s energy
load to improve the efficiency and cost of the the building operation [16].

Researchers interested in better understanding human mobility
include civil engineers and urban planners trying to understand
mobility in cities, social scientists trying to understand interactions
among people in public places and how it relates to their interac-
tions in virtual environments, wireless network researchers using
mobility and wireless usage data to design better wireless commu-
nication protocols, and HVAC engineers trying to design systems
with higher energy efficiency and user comfort. These disciplines
study and model human mobility at different granularities. For ex-
ample, occupancy models for buildings are usually aggregated at
the level of a room or an HVAC zone. Taxi ride and vehicular GPS
data capture occupancy at the level of regions in a city.

In this paper, we start exploring the use of data from card readers
in an office building to learn spatio-temporal models of human
mobility. Our setting exhibits considerable heterogeneity in the
way people move in a building. For example, consider the following
mobility profiles:

(1) An employee who spends most of his time in his office, except
for a few hours spent in meeting rooms each week and
daily visits to the cafeteria.
(2) A high-level manager who is almost always attending meet-
ings, which tend to last about an hour (his time is valuable)
and be in various parts of the building (his responsibilities
are broad and involve multiple departments).
(3) A janitorial staff member who is responsible for a given
building and makes the rounds of this building, visiting each
room, but spending little time there.

We view human mobility as a flow-conserving diffusion over the
graph whose nodes are the zones of the building accessible through
card readers. While various approaches have been proposed to
model diffusion over graphs in general and human mobility in
particular [2, 18, 25, 28, 31, 33], the state of the art has 3 main
shortcomings in the context of our setting:

(1) Existing approaches do not specifically cater to the hetero-
genrety in mobility profiles in our setting. They typically
characterize a homogeneous population of moving objects,
but allow for variations in mobility by time of day and other features.

(2) Much of the existing spatio-temporal models assume the spatial and temporal aspects are two sides of the same coin where the time and location of an entity’s next moves are interdependent [31, 33]. This is a direct consequence of using the exponential distribution for the duration of stay, which essentially ties the spatial and the temporal aspects of mobility.

(3) When using features, existing approaches attach features to nodes and assume high mobility between similar nodes [33], which is not necessarily true in our setting. For example, people do not necessarily move to a conference room after being in one.

To address these shortcomings, we propose a spatiotemporal human mobility model that:

(1) Uses latent variables to posit the existence of multiple mobility profiles and the parameters of each.

(2) Separately models the spatial and temporal aspects of mobility for each profile.

(3) Attaches features to transitions, rather than individual nodes, for a richer model.

(4) Uses a neural network formulation to learn the latent parameters.

Our work is inspired by machine learning for natural language processing where latent (hidden) variables represent underlying topic models and each topic gives rise to a distribution over the observed data (words in a corpus). Similarly, we posit the existence of mobility profiles, with each profile responsible for spatio-temporal patterns in mobility.

We present an inference approach to learn the parameters of our model from observed timestamped trajectories. We presents preliminary results on synthetic data, as well as data obtained from access control devices (card readers) in our office building.

This paper is organized as follows: Section 2 reviews related work in the areas of human mobility modeling and diffusion modeling. In Section 3, we give background of specific the works that we base this paper on, present our latent allocation model and explain the inference algorithm we propose to learn it. Section 4 shows our initial experimental results. We conclude and outline the remaining work we will do in Section 5.

2 RELATED WORK

2.1 Human mobility

2.1.1 Settings and goals. The body of work devoted to studying human mobility is larger than can be summarized in this section, so we will present a sample thereof and focus on works that are closer to ours in their goals or approaches.

A large portion of studies of human mobility addresses mobility in cities using data from taxi rides and GPS data. Modeling human mobility for next location prediction can inform resource management policies on the part of taxi companies and municipalities [28]. Human mobility data can also be combined with POI data to infer the purpose of a trip (e.g., shopping, dining, work) [34], which can be useful in planning urban development and commercial space purpose and location. Call Detail Records and smart phone data have also been used to construct mobility models [2, 12, 14]. The insight obtained from these studies can be used to construct more effective policies for crowd control in emergency situations, as well as planning the timing and location of road work and detours.

With the advent of mobile devices, wireless communications are providing increasingly large amounts of data that sheds light on human mobility at sub-city levels like university campuses [18, 26]. In these kinds of studies, the improved understanding of human mobility is a means towards an end; the studies are often conducted by researchers from the wireless networks community who seek to design better communication protocols and infrastructure. A smaller number of papers focuses on human mobility indoors (e.g., in office buildings [5, 23]). One of the main motivations behind studying indoor mobility is to improve energy efficiency of office and residential buildings. Numerous occupancy models have been proposed, but most of them operate at the aggregate level, where they model total occupancy at the level of a room or region without regard to modeling individual trajectories [15, 16, 20].

2.1.2 Approaches. Non-modeling studies: Many studies of human mobility are descriptive in nature, especially work using wireless network data. A dataset is analyzed and the salient features therein are discussed, but without proposing a model that fits the observed mobility patterns. One example is the work done on understanding the persistence and prevalence of mobility in office buildings [5]. Persistence reflects session durations whereas prevalence reflects the frequency with which users visit various locations. The work finds that the probability distributions of both measures follow power laws. Another example are works that describes different use loads and traffic categories of a campus wireless network over time [18].

Another descriptive work explores the predictability of whether two persons will interact by analyzing tracing data from academic and office environments [26]. They collect ground truth of social structures and use smart phone data to shed light on mobility by consider which wireless access points were visible to a phone at a given time. Using “virtual locations” derived from these access points, they generate a sequence of locations per user. They discover communities that resemble the communities they found in the social structure data.

Modeling studies: For efforts that aim to construct predictive mobility models, some only focus on the spatial aspect, where the goal is to predict the next location of a user, while others focus on temporal models that predict whether a user will remain in her current location for the next t minutes. More specific temporal models attempt to predict the time at which the user will transition to a new location.

One mobility model is the Trajectory Patterns Tree, a type of decision tree that predicts the next location of a trajectory by finding the path in the tree that best matches the locations on the trajectory so far [28]. Learning depends on the movement of all available objects in a certain area instead of on the individual history of the owner of the trajectory only. This way, data is leveraged for learning across moving objects, but without attempting to only leverage data from objects closest in behavior to the current object.
Latent Allocation Spatiotemporal Models
For Indoor Human Mobility

Prediction of a user’s next location has also been cast as a classification problem where the covariates include location, time of arrival, previous location and previous duration of stay. Even the temporal aspect of mobility was cast as a classification problem, where a binary classifier learns a mapping from the predictive features to 0 or 1 indicating whether the person will move in next n minutes [23].

Another work that tries to build a model of next location uses dynamic Bayesian networks (DBNs) [12]. The random variables in the DBNs include location, day of the week, and time of day. The work uses two mobility data sets: a Call Detail Records data and a Nokia mobile data which is based on GPS. The authors address the shortcomings of having a single mobility model by proposing three models and using different approaches to combine them.

The idea of increasing prediction accuracy by leveraging mobility data of a person’s social acquaintances was demonstrated on the Nokia Data Challenge [13]. The assumption is that especially on university campuses, people in the same social circle will tend to visit the same locations at the same times (e.g., having meals together, or studying in the library at the same time).

This idea was further explored in order to leverage data from people who are not necessarily within the social circle of the user we are modeling. The authors use spatial and temporal similarity measures to find those users, which they call similar strangers [2]. A Dynamic Bayesian Network is proposed to capture the dependency of the next location on a number of features, which incorporates aspects of the mobility patterns of similar strangers. They demonstrate their approach on CDR data.

In pedestrian movement prediction [4], individuals are clustered into groups based on their mobility traces. The approach learns a Markov model for each group. To predict a person’s next location, the approach identifies the group they belong to and infers the next location based on this group’s model.

Like our approach, prior work has looked into both the spatial and temporal modeling of mobility, but using smart phone data. The authors propose a model that attempts to find relevant contextual features that help in predicting the next location and duration of stay [14]. They use ensemble methods to combine models that use different contexts, where these models describe different conditional distributions over the location/duration given contextual variables.

In summary, surveying the state of the art in approaches to modeling human mobility, we find the following alternatives:

- Dynamic Bayesian networks based on individual features [12].
- Dynamic Bayesian networks with locations of similar strangers [2].
- Classifiers for predicting whether a person will move in the next t time steps, and which if n locations they will move to (SVN, KNN, DT) [23]
- Association rules + matching function to find a matching rule [29]. All the matching functions are based on support and confidence and do not consider spatial and temporal distance.

- Clustering trajectories using some notion of trajectory similarity (like a matching function), which is typically distance-based.
- Decision tree for mining trajectory patterns [28].

2.2 Diffusion models

Studying the progress made in learning diffusion models is very relevant to human mobility, since the movement of humans can be seen as diffusion over a graph whose nodes are the different locations. As with human mobility, learning a diffusion model involves learning a model of the spatial and temporal behavior of the spreading phenomenon.

Learning the diffusion process or the structure of the graph on which a phenomenon spreads has many applications in information diffusion [17, 31], epidemiology [11, 24] and social networks analysis [10, 35]. Again as in human mobility, learning is based on (possibly partial) observations of trajectories; sequences of where the phenomenon has been and when.

Approaches for diffusion learning often do not fully exploit the rich features associated with each transition in a trajectory. In human mobility, these features can include the type of the edge (road or corridor), features of the source and destination locations, and features of the person making the transition (e.g., department and title of the employee in an office building). Works on feature-based diffusion do consider features of the source and destination, but only in terms of the difference between their feature vectors, assuming that the smaller the distance, the more likely an entity is to make the transition [33]. While this approach reflects the high probability of memes and retweets spreading among people with similar interests in social networks, this assumption does not make sense for human mobility, since humans move among locations with different functions and features to fulfill their needs. For example, in an office building, people are not necessarily likely to go to another conference room after being in one.

2.3 The spatial and the temporal

Much of the earlier work studying how phenomena spread or physical objects move were restricted to using discrete time, where the object or phenomenon moves from one location to the next in unit time and immediately moves on. As such, these models are oblivious to the notion of duration of stay and only model the spatial aspect of the spread. Examples of these models include Markov chains and a line of diffusion modeling work using independent cascade (IC) models [17]. Data used to learn these spatial models consists of trajectories or sequences of cascades which list the locations visited by the phenomenon in the order they were visited.

These earlier models were extended to capture and account for time spent at a location and travel time. These spatiotemporal models include continuous time Markov chains (CTMC) and spatiotemporal IC models [31]. They learn from data consisting of time-stamped trajectories or sequences of cascades which list the locations visited and the time at which the visits happened.

The above models focus on the propagation of natural phenomena and phenomena taking place in social networks, like the spread of memes or news. They typically uses an exponential distribution to model the duration of stay at a given location [3, 33]. In these
domains, there are two main assumptions or characteristics that make the exponential distribution very suitable:

- The remaining amount of time an object spends at a location is independent of the amount of time already spent. In other words, the distribution of the duration stay is memoryless.
- The higher the propagation between two locations i and j, the shorter the duration of stay of an object at i before spreading to j.

When studying human mobility, the above assumptions are questionable because unlike the phenomena studied above, the traveling entities here are humans that make active decisions where to go next, unlike a contagion of viruses or the spread of a rumor. For example, the amount of time a person spends in a meeting room is typically very dependent on how much she has been there already; people tend to meet for an hour and if 20 minutes have passed, the distribution over the remaining time should peak around 40 minutes, or can even be bimodal with another peak at 100 minutes to reflect 2-hour meetings.

Similarly, the second assumption is more appropriate in social networks where the fact that person i forwards a lot of content to her friend j, then i tends to do this fairly quickly after i herself receives this content. In human mobility however, a person may be in the habit of always heading for a coffee machine located near a certain meeting room after a meeting, but that does not imply that he moves to the coffee machine location soon after he reaches the meeting room. The model of the expiring alarm clocks that is inherent in exponential distributions of stay is thus broken.

3 Latent Allocation Mobility Model

3.1 Problem formulation

We propose a spatiotemporal model to learn human mobility in office buildings based on observed timestamped trajectories obtained from access control devices like card readers.

We model the problem as movement on a graph $G = (V, E)$. We model the spatial aspect of mobility using the matrix $A = \{\sigma_{jk} | j, k \in V, j \not= k\}$, where σ_{jk} is the probability of moving to k given that the person is in j. We model the temporal aspect of mobility using the matrix $\Sigma = \{\sigma_{jk} | j, k \in V, j \not= k\}$, where σ_{jk} is the parameter of the Rayleigh distribution which describes the duration of stay of a person in room j before moving on to room k. We give more details on these 2 parameters interact later in this section, but note the independence of the spatial and temporal distributions describing mobility between two nodes.

The data we learn our model from is in the form of timestamped trajectories, or cascades:

$$
\pi^c = \{(v_0^c,f_0^c),(v_1^c,f_1^c),...,(v_{N_c}^c,f_{N_c}^c)\}
$$

where π^c is the c-th cascade, f_c^c is the time at which the entity moved to location v_c^c, N_c is the length of cascade c and f_c^c is the feature vector associated the transition from v_c^c at time f_c^c. One option for f_c^c is the feature vector of the node v_c^c, although a richer feature vector can be used.

3.2 Latent allocation model for mobility profiles

Our approach posits that the heterogeneity observed in how people move in a building arises from the existence of multiple underlying mobility profiles, each giving rise to a distribution over transitions in a trajectory.

We propose a graphical model with latent variables that are similar to the notion of topics in the well-known Latent Dirichlet Allocation (LDA) model used extensively in natural language processing [8]. In our setting, we assume that each of our K different “topics” represents a mobility profile that has an associated set of spatial and temporal parameters.

The generative process that generates transitions can be described as a graphical model as shown in Figure 1. The process initially generates distributions $[A, \Sigma] \sim N(\theta, \Gamma)$ where $N(\theta, \Gamma)$ is a normal distribution. θ and Γ are hyper-parameters for the spatial transition parameter A and temporal transition parameter Σ.

![Figure 1: Plate notation for the graphical model of transitions from K mobility profiles. M is the number of transitions per trajectory. Shaded nodes are observed while clear nodes are latent (hidden).](image-url)
Table 1: Elements of our latent allocation model.

<table>
<thead>
<tr>
<th>θ, Γ</th>
<th>Hyperparameters for the spatial and temporal distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A_k \in R^{N \times N}$</td>
<td>Matrix of transition probabilities of mobility profile k (spatial)</td>
</tr>
<tr>
<td>$\Sigma_k \in R^{N \times N}$</td>
<td>Matrix of Rayleigh parameters of mobility profile k (temporal)</td>
</tr>
<tr>
<td>$F \in R^d$</td>
<td>Feature space of dimension d</td>
</tr>
<tr>
<td>$W \in R^{K \times d}$</td>
<td>Weights per feature per topic</td>
</tr>
<tr>
<td>$b \in [1..K]$</td>
<td>Allocation vector (sums to 1)</td>
</tr>
<tr>
<td>$z \in [1..K]$</td>
<td>Sampled topic/mobility profile</td>
</tr>
<tr>
<td>$Y \in V^2 \times R^2$</td>
<td>Realizations of transitions of the form (v_i, t_i, v_j, t_j)</td>
</tr>
<tr>
<td>K</td>
<td>Number of mobility profiles</td>
</tr>
<tr>
<td>N</td>
<td>Number of nodes/locations</td>
</tr>
<tr>
<td>M</td>
<td>Number of transitions in a cascade</td>
</tr>
</tbody>
</table>

For each transition from location v_i that was reached at time t_i with feature f_i, the generative process is as follows:

1. Generate $b \sim S(f_i^T \omega)$, where $b_j = S_j(f_i) = \frac{e^{f_i^T \omega_j}}{\sum_j e^{f_i^T \omega_j}}$, $j \in [1..K]$ and $S_j(f_i)$ is a softmax function. Notice that $S(f_i)$ can be viewed as a neural embedding [21] for feature f_i and could be a deep neural network as long as the final layer is a softmax function. b is thus the allocation vector describing the probability of allocation of the transition to each topic or mobility profile.

2. Sample the topic/mobility profile $z \sim \text{multi}(b)$ where $\text{multi}(b)$ is a single draw multinomial distribution parameterized by vector b.

3. Given topic z, matrices A_z and Σ_z are the generating parameters for the spatial and temporal aspects of the transition, respectively.

4. Sample the next node to visit $v_j \sim \text{multi}(A_z, v_i)$, where $A_z_{v_i, v_j}$ is the v_i-th row of A_z.

5. Sample $d_{ij} \sim \text{Ray}(\Sigma_z, v_i, v_j)$ where $\text{Ray}(\sigma)$ is the Rayleigh distribution

$$\text{Ray}(\sigma; \gamma) = \frac{x - C}{\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

The arrival time at location v_j is $t_j + d_{ij}$.

6. The transition y_i is then $(v_i, t_i, v_j, t_j, f_i)$.

The likelihood of a trajectory τ_i according to the above generative process is therefore:

$$P(\tau_i | \theta, \Gamma) = \prod_{k=1}^{K} N(A_k, \Sigma_k; \theta, \Gamma)$$

$$\prod_{m=1}^{M} S(b_m | f_m) \ \text{multi}(z_m = k|b_m) \ \text{multi}(v_{m+1}|A_{z_m, v_m})$$

$$\text{Ray}(t_{m+1} - t_m | \Sigma z_m, v_{m+1})$$

where $S()$ is a softmax function, multi() is a multinomial function, $\Sigma_{k,i,j}$ is the ij entry of matrix Σ_k and $\text{Ray}()$ is the Rayleigh distribution.

3.3 The Inference

We now outline the inference algorithm for learning the parameters of the proposed model. We use variational inference, which originated in physics [6] and was first introduced by Michael Jordan [22] to the machine learning field. Mean field variational inference is widely applied in latent variable graphical models such as LDA [8].

Denote the unknown latent variables collectively by $L = A, \Sigma, z, W$ and the observation data by π. The Bayesian inference problem for finding the parameters in Equation 4 is:

$$P(L | \pi) = \frac{P(\pi | L) P(L)}{\int L P(\pi | L) P(L)}$$

It is obvious that the integral in the denominator is intractable for any reasonable sized problem, since the overall size of the latent variable is $2 \times N^2 + M$, where N is the number of nodes and M is the number of observed transitions. Instead of computing $P(\pi | L)$ directly, variational inference aims to compute an alternative variational distribution $q(L; \phi)$. The optimal parameter of the variational distribution is the one that minimizes the KL-divergence between the original posterior $P(L | \pi)$ and the variational distribution $q(L; \phi)$:

$$q^*(L; \phi) = \arg \min_q \text{KL}(q(L; \phi) || P(L | \pi))$$

Note that in variational inference, instead of minimizing the KL-divergence directly (which is still intractable), we minimize the equivalent term:

$$\mathbb{E}_q(\log q(L; \phi)) - \mathbb{E}_q(\log p(L, \pi))$$

since

$$\text{KL}(q(L; \phi) || P(L | \pi)) = \mathbb{E}(\log q(L; \phi)) - \mathbb{E}(\log p(L, \pi)) + \log p(\pi)$$

which is the original KL-divergence minus a constant with respect to q.

A transformation of Equation 6 shows that

$$\mathbb{E}_q(\log q(L; \phi)) - \mathbb{E}_q(\log p(L, \pi)) = $$

$$\text{KL}(q(L; \phi) || P(L)) - \mathbb{E}[\log p(\pi | L)]$$

The first term indicates that the optimized variational distribution should be close to the prior, and the second term indicates that it should put its mass on the configurations of latent variables that explains the data. Thus variational inference encodes the trade-off between likelihood and prior knowledge commonly seen in Bayesian statistics.

Our Bayesian inference problem is therefore transformed to a two step task:

1. Specify a class of variational distributions $q(L; \phi)$.
2. Solve the optimization problem in Equation 6.
3.4 Function approximation using neural networks

Neural Networks have been successfully applied as universal function approximators [19] to various functions such as the classification function in object detection [30], the regression function in sequence-to-sequence translation [32], and probability density functions [27] [7].

In this paper, we assume the variational distribution is approximated by a feed-forward neural network:

\[q(A, \Sigma, b, W; \phi) = Q_A(A; \phi_A, I_A)Q_\Sigma(\Sigma; \phi_\Sigma, I_\Sigma)Q_b(b; \phi_b, F, \Sigma_b, W) \]

The details of the neural network are shown in Figure 2, where the layers of the network are described as follows:

(1) Input layer: \(I_2 \) and \(I_A \) are identity vectors, and \(F \) is a matrix of training features. \(\{I_2, I_A, F\} \) act as input for the feed-forward neural network.

(2) Fully connected layers: The input \(\{I_2, I_A, F\} \) goes through three fully connected layers. Since the spatial transition parameter \(A \) and temporal transition parameter \(\Sigma \) are independent, using three distinct fully connected layers reduces the parameter dimension and increases scalability.

(3) Intermediate output: \(h_2, h_A, h_b \) are the unconstrained outputs of the fully connected layers.

(4) Variable-specific layers: these layers encode assumptions or constraints on the variables \(\Sigma, A, b \). For example, for the constraint \(\Sigma > 0 \), we use an exponential activation function, and for the constraint that rows of \(A \) are in the interval \([0, 1]\) and sum to 1, we use a softmax activation function.

(5) Latent variable output: these are the parameters of latent variables \(\Sigma, A, b \). If \(\Sigma, A, b \) are assumed to be point-wise values with probability 1, these nodes can indicate these value themselves. Or if \(\Sigma, A, b \) are assumed to be distributions, these nodes can indicate the parameters of the distribution.

(6) Loss function: the loss function as defined in Equation 6. In addition, in the implementation, we also use: (1) the \(L_2 \) regularization on the weights of the neural network; (2) the cross entropy of the distribution on the parameters of different mobility profiles, based on the assumption that the mobility profiles should be distinctive.

Now the inference is reduced to finding the optimal parameters in the above neural network to minimize Equation 6. This can be done using first-order optimization schemes such as Stochastic Gradient Descent [9] very effectively in Tensorflow at scale [1].

4 EXPERIMENTS

4.1 Simulated dataset

We now present experimental results using synthetic data generated from a hypothetical office building with 5 zones as shown in Figure 3. Node 0 is the building entrance and nodes 3 and 4 are exits. There are two mobility profiles; one profile dominates in bad weather, such as wind and rain, where people tend to heavily use the link \(1 \rightarrow 3 \) and \(2 \rightarrow 4 \). The other is a fair weather profile where people tend to heavily use the link \(1 \rightarrow 4 \) and \(2 \rightarrow 3 \) to enjoy the sunshine. Additionally, we assume that in good weather, people tend to stay in the office for shorter periods than in bad weather. For simplicity, we assume that this binary weather is the only feature (i.e., \(F \in \{0, 1\} \)).

Given a binary feature, the sizes of the latent variable are as follows:

(1) For each of the 2 mobility profiles, the spatial transition matrix \(A_k \) is \(5 \times 5 \)

(2) For each of the 2 mobility profiles, the temporal transmission matrix \(\Sigma_k \) is \(5 \times 5 \)

(3) Number of latent variables \(z \) is \(M \), where \(M \) is the total number of transitions in the data and each transition is allocated 1 of \(K \) mobility profiles.

(4) The softmax parameter \(W \) to map from \(F \) to \(b \) is \(2 \times 2 \)

(5) The latent variable vector \(b \) is of size 2.

Figures 4 and 5 show the true and inferred \(A \) and \(\Sigma \) for each mobility profile. As the figures show, our inference algorithm is able to recover the spatial transition parameters fairly accurately, inferring the higher tendency to use edges \(1 \rightarrow 3 \) and \(2 \rightarrow 4 \) in one mobility profile and edges \(1 \rightarrow 4 \) and \(2 \rightarrow 3 \) in the other.

4.2 Access control dataset

We now report on our work in progress in applying our approach to a real dataset. We obtained an access control (AC) dataset consisting of card swipe logs collected by card readers in our facility. Employees have cards enabling them to access different areas of the facility, with some areas not subject to access control (freely accessible without needing to swipe). For each card swiped at a reader, the reader logs the time of swipe, card ID and whether access was granted. The card ID links to the owner’s information in an employees database.

This type of access control dataset poses some interesting challenges and opportunities. One of the challenges is that a given card reader can control access to locations with a mix of very different uses like offices and conference rooms. This means that from a card reader reflects usage patterns of different types of rooms and can result in very heterogeneous spatial and temporal mobility patterns.

Another challenge is that in our setting, employees must swipe into an AC areas, but they do not swipe out. So if a person transitions from an AC area to a non-AC area, this move is not logged, and in building the graph representation, the move appears as a self-loop. This is equivalent to having partially observable data where the exact time a person left the AC area is unknown.

That being said, access control data, when collected, is cleaner and more accurate than location data inferred from wireless network access points, as is common in indoor human mobility literature. [2, 18, 26].

To conduct experiment, we selected a small subset of 5 card readers in our facility. Figure 6 shows preliminary results of inferring \(A_k \) from our AC dataset using the time of day as a binary feature (morning vs. afternoon). As can be seen, this feature is not appropriate for uncovering mobility profiles and the inferred parameters for both profiles are not very distinct.

Since the AC data is linked to the employee data that contains information like the employee’s department, job title and office location, we see a lot of potential for using a much richer feature space that will allow the model to uncover and learn interesting mobility profiles.
We also see room for improvement in the model itself. We can add a diversity term to the objective function that encourages parameters of the different mobility profiles to be different in order to yield more distinct, and hopefully more interpretable profiles.

5 CONCLUSION

Being able to understand, model and predict human mobility in large buildings like corporate offices can have fundamental effects on the way these buildings are managed in terms of energy efficiency, emergency response, and other aspects. We propose a novel spatiotemporal model of human mobility from observed trajectories. Our approach posits the existence of different mobility profiles that reflect the heterogeneity in the way people move between locations.
in a building. To learn the parameters of each mobility profile, we frame the model as a neural network and leverage the powerful existing machinery for neural networks. We demonstrate how our model and learning approach recover spatial and temporal mobility parameters from synthetic data. We also present our access control dataset from our corporate building, give sample initial results and outline the next steps of this work in progress.

6 ACKNOWLEDGMENT

This paper is based on work partially supported by the NSF (CA-REER IIS-1750407), the NEH (HG-229283-15), ORNL (Task Order 4000143330) and a Facebook faculty gift.

REFERENCES

Yiming Gu, Hala Mostafa and B. Aditya Prakash

